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The classification/categorization of oscillatory chemical reactions and the determination of the connectivity
of species in a reaction mechanism can be deduced from several experiments. In this article we show the
same for bifurcation diagrams. We construct such diagrams for skeletal models of each of the known categories;
these are distinct and can be used for the classification of species essential for oscillations and for the
categorization of oscillatory reactions. The bifurcation diagrams are closely related to the concentration shift
matrix. Prototypes of categories 1B and 1C are extended by adding nonessential species. By assuming that
in a flow-through stirred reactor bifurcation diagrams for each pair of constraints (the inflow concentrations
and the flow rate) can be measured, we are able to determine the category of the examined oscillator and also
deduce the connectivity of the corresponding reaction network. Bifurcation diagrams possess a cusp region
with specific tilt. This information together with the knowledge of a concentration shift across the saddle-
node bifurcation provide the clues for categorization as well as for the reconstruction of the network’s
connectivity. As an example, we present an analysis of the BeletiBoabotinsky reaction represented by

the Field-Koros—Noyes mechanism and discuss the feasibility of reconstruction of the mechanism from
experiments.

1. Introduction of the connectivity of the network. The use of bifurcation
. . . . . diagrams for categorization has been initiated in ref 1; here we

Mechanisms of reaction systems with oscillatory dynamics {51,y those studies to establish complete relations, particularly
or multiple stationary states can be categorized according {0, ¢oncentration shift experiments, and hence to categorization.
basic featlures |n.the|r reaction neftWOHS"Ch as autocatalync There have been several attempts to use bifurcation diagrams
Ioopg, exit reactions, and negative f_eedba_ck loops. This cal- 14 decide between proposed alternative mechanisms. Noszticius
egorization is base_d in part on st(_)lch|ometr|c network a_maly5|s et all° studied the BelousovZhabotinsky (BZ) reaction in a
(SNA)’Z which prowde§ a convenient tool of dgcomp05|ng the flow-through reactor with various chemical reagents being fed
entire network operating at a stationary state into subnetworks; "2 -4 oncluded that the bifurcation diagrams can be used as
and indicates those which can cause the network’s stationaryfingerprints of the perturbing reagent. Olsen and Epétein
state to.become_ ungtable. De_fi_ningtegories fpr ospillatory examined the effect of alternative proposed pathways on
mechanlsmalso |mplles aclas.sn‘l.catlon 1°f speqe’saklng part calculated bifurcation diagrams, compared them with available
n tho§e meChan'SmS: In Eiswirth et a!and n s_ubsequent experiments, and suggested further experiments for the mixed
work#"® several experiments for classifying species and deter- | o1t and chlorite-iodide reactions. Ringlaridshowed how
mining the reaction categories were proposed and tested on thecertain codimension 2 points in a bifurcation diagram for a
chlorite—iodide reaction and horseradish peroxidase reaction. seven-variable model of the BZ reaction can be used to accept/
Moreover, these experiments help to deduce rather than gues xclude the model when compared with experimental data.
the connectivity of the reaction network and other features that By means of several examples we show how the task of

are useful for identification of the reaction mechanism. Among - o .
mechanism determination may be systematically approached

those experiments are the followiAdl) amplitude and phase ; . ; . .
P di) amp P using the bifurcation diagrams (and closely related concentration

relation of oscillations of chemical species, (II) concentration hif . dqf ) nal h h
shift regulation and destabilization, (Ill) pulsed species response,S ift matrices) constructed from experiments in a flow-throug
(IV) phase response, (V) Jacobian matrix elements, (V) reactor, where the flow rate and inflow concentration of each

quenching, and (VII) bifurcation analysis species is systematically varied to provide two-parameter
For these and yet other experiments the relation of the bifurcation diagrams. These diagrams typically contain a cusp-

. . " . shaped region of multiple stationary states and essentially
experimental results to information about the reaction mecha- 7, . . . . .
: - delineate regions of oscillatory and nonoscillatory behavior, as
nism has been worked out fully except for items 1V, V, and

well as regions of bistability between stationary states. A
VII. . ;
. . . . predominantly occurring structure called tleoss-shaped
Hence we focus here on using bifurcation diagrams deter-

. - o =" diagram® involves the cusp-shaped region bounded by a curve
mined from experiments for the categorization and deduction corresponding to a saddle-node bifurcation, and a curve corre-
. — sponding to a Hopf bifurcation that makes arshaped loop
Fa;Acécérgs?szgo‘rlr%}els?ondence to this author. E-mail: JOhn-“’SS@St""”for‘"-edu-surrounding the cusp point, intersects itself within the cusp-

t Prague Institute of Chemical Technology. shaped region, and touches the saddle-node curve in two points

* Stanford University. of codimension 2 (BogdanevTakens points). Thus the oscil-
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latory region extends beyond the tip of the cusp; bistability is related networks. Therefore paradigmatic examples provided for
confined to the interior of the cusp and excitability occurs in each category in prior wotk® need not be examined for every
between. This highly symmetric structure may not always be possible combination of parameters; rather, a point or region
present; in many cases the self-intersection is missing or therein the parameter space reflecting typical behavior may be
are two separate branches of the Hopf bifurcation. selected to demonstrate categorization criteria. Since we are

Nevertheless, the primary feature is the tilt of the cusp-shapedexamining systems displaying in general either oscillatory
region; the actual arrangement of the oscillatory region is dynamics or multiple stationary states we first search for an
secondary in the mechanism determination. Along with the organizing singularity that involves both features. Such a
bifurcation diagrams, one-parameter diagrams of stationary statesituation is provided by a Bogdanewakens (BT) bifurcation
concentrations near the cusp are useful in providing information associated with a double zero eigenvalue of the Jacobian at the
about the mechanism. We discuss how these two types ofstationary state; this is a codimension 2 bifurcation, where a
diagrams can be used to determine the category, to classify thesaddle-node bifurcation (giving rise to multiplicity) and a Hopf
species, and how to tie the essential and nonessential speciebifurcation (giving rise to oscillations) meet. In two-parameter
to the reaction network. bifurcation diagrams this corresponds to a point where a Hopf

In Section 2 we construct representative bifurcation diagrams bifurcation curve terminates and touches a saddle-node bifurca-
for skeletal models of each of the known categories of chemical tion curve. By starting with a BT point we can track the
oscillators. Each category has its own distinctive bifurcation emanating bifurcation curves by numerical continuation meth-
diagrams, and hence these can be used for the classification obds® and construct the bifurcation diagram.

essential species and for categorization of the reactions. To select a BT point we employ a parametrization as used in

In Section 3 we show that the bifurcation diagrams are closely SNA? (see Appendix A for more detail); instead of the reaction
related to the concentration shift matrix; then we construct a rate coefficientsk, *+-, k. (internal parameters) and the flow

global concentration shift matrix and formulate rules for this rate ky and inflow concentrationsgs, ***, Xon (€Xternal con-

matrix which can be used in the reverse problem, that of a straints) we turn to the coefficients,, used in expressing a
systematic reconstruction of a reaction network. As a preliminary general reaction rate vector (current) as a linear combination
example of the reconstruction procedure we extend prototypesof specific rate vectors representing major reaction subnetworks
of categories 1B and 1C by adding nonessential species,(extreme currents), and the stationary state concentratigns
calculate bifurcation diagrams, transform them to the global shift .. x . of the species involved. For a given network representing
matrix, and then describe the reconstruction of the network. 3 given category, we first calculate from its stoichiometric matrix
In Section 4 we apply these results to the problem of deducing v the set of extreme currenf®}. Then we examine their
a network’s connectivity from experimentally obtained bifurca- stability matrix V (see eq A4) and identify the potentially
tion diagrams. We calculate bifurcation diagrams for the FKN ynstable ones. This is indicated by negative principle mifiors
mechanisri-15of the BZ reaction and discuss the reconstruction of v/, After that we choose stationary values of all concentrations
of the mechanism based on these diagrams. Then we discussg that their values for certain groupslafpecies (indicated by
the experimental feasibility of such a reconstruction. We have negativef) are small enough, so that the instability of the
also investigated successfully the mixed-Landolt (iodate stationary state for the unstalsigs is ensured. Next we combine
sulfite—ferrocyanide) reactiof, 8 but the preliminary results gl extreme currents by setting their’s so that a Hopf
are not presented here. bifurcation point is obtained, taking into account certain
Appendices A and B contain necessary elements of the SNA constraints imposed by the flow-through arrangement. This task
theory and basic facts from the classification and categorization can be accomplished since we know the stability of the extreme

of oscillatory mechanisms. currents from the previous steps; hence major positive and
negative feedback loops can be identified and the corresponding

2. Calculations of Bifurcation Diagrams of the Categories currents combined to get an oscillatory instability. Finally, we

of Oscillatory Reactions select two extreme currents, one associated with oscillatory

Oscillatory reactions can be grouped into several distinct dynamics and the other one with multiplicity, and use the two
categories based on the aforementioned experiments. Since th§0respondingu’s as parameters to construct the Hopf bifurca-
categorization process makes use of SN#cessary elements tion curve in a two-.parameter bifurcation diagram and trace it
of that theory are reviewed in Appendix A; the fundamentals down to the BT point.
of classification/categorization established in previous Wtk We use the current evaluated at the BT point for switching
are given in Appendix B. We also refer the reader to both from parametrization byy’s (at fixed stationary state = (Xos,
Appendices for the notation and basic form of equations ***, Xon)) to the usual parametrization by rate coefficients and
assumed throughout. external constraints. Since the values of reaction raiés),

Once the classification/categorization is established one can***, vr(Xs) in this current are known, as well as their functional
proceed to obtain more detailed information about the unknown form (power law kinetics are assumed), the reaction rate
parts of the mechanism by deducing their network connectivity coefficients can be readily calculated. In this way, rather than
(particularly with respect to nonessential species) from experi- being empirically chosen, the reaction rate coefficients are
ments of type Ill and IV as described earfiémand also from  selected by design based on a dominance of certain key
experiments of type Il and VIl as will be shown here. subnetworks in the linear combination of all extreme currents.

To develop the categorization derived from bifurcation This approach gives considerable insight into the way the basic
diagrams we begin with the use of SNA to locate an organizing subnetworks are put together to form the whole of the network.
point capturing the oscillatory and multiple stationary state  2.2. Bifurcation Diagrams in External Constraints. The
dynamics, and from there we proceed with construction of the flow rate and inflow concentrations are the external constraints
bifurcation diagrams representing each category. considered here. Eiswirth et aprovide a table characterizing

2.1. Bifurcation Diagrams in SNA Parameters.Categoriza- bifurcation diagrams of category 1 oscillators using various pairs
tion relies on typical features shared by a group of mutually of inflow concentrations{y, Yo, andZ, of the essential species
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Figure 1. Bifurcation diagrams and reaction network for a prototype of category 2C. Rate coefficients used in calcukations91569 k, =
5.04517. Notation: solid line, saddle-node bifurcation; dashed line, Hopf bifurcation; square, BT point; osc, bis, exc, region of oscikisibles, bi
stationary states, and excitability, respectively. Fixed parameter values for the reference BTkpeird:5, Xo = 0.5,Z, = 6.8.

X, Y, and Z as bifurcation constraints. Following this approach unstable) either as “upper” (¥or Z,) or “lower” (X, or Z).
we extend the table by using pairs of flow raiaflow The two such stationary states in Figure 1 arg &%) and (X,
concentration, since they are frequently used in experimental Z)); they coexist in the cusp region; the “lower” state with
studies. In all diagrams of this type the important feature is the respect to the autocatalytic species X (and “upper” for Z) extends
orientation of the cusp with respect to the coordinate axes. down-left from the cusp regienthe autocatalytic pathway is
Generically the cusp is tilted rather than being parallel to one unimportant under such conditions; the “upper” state for X (and
of the coordinate axes. Consequently the “symmetry axis” of “lower” for Z) extends up-right where the autocatalytic pathway
the cusp (the line to which both branches of the cusp curve aredominates. As will be shown later, this labeling makes it possible
tangent at the tip) has generically either a positive or a negativeto relate the bifurcation diagram to the concentration shift matrix.
slope; we call the two casediagonal and anti-diagonal Two main dynamical modes, oscillations (predominantly
respectively. Within each category the diagonal or anti-diagonal occurring within a region marked by a Hopf bifurcation), and
orientation is preserved for a given pair of constraietgardless bistable stationary states are labeled by osc and bis, respectively.
of the choice of rate coefficientdloreover, the tip of the cusp  However, bistability does not fill up the cusp region entirely
is directed specifically either to the left or to the right (with because the Hopf bifurcation may destabilize one of the
respect to the horizontal direction) for each essential species instationary states. In this case the remaining stable stationary
each category. In addition, an oscillatory region may extend state is excitable and we label the corresponding part of the
past the tip.Therefore the pattern of the saddle-node and the cusp region by exc. The border between oscillatory and excitable
Hopf cures can be used to indicate categories and classify regions is formed largely by a saddle-node-infinite-period
essential species in much the same way as deductions from othe(SNIPER) bifurcation where the threshold for excitability
experiments, such as the concentration shifts and phase. shiftsbecomes zero.

Below we systematically construct and discuss bifurcation ~ Some features of the diagrams in Figure 1 are as follows:
diagrams in external constraints for each category with emphasis (a) WhenZ, is small, Figure 1b,c, there is a unique stationary

on the flow rate-inflow concentration space. state while for large enough, regions of multiple stationary
2.2.1. Category 2CThe prototype for category 2C networks states and/or oscillations occur due to autocatalytic instability.
in Figure 1d (basically the Selkov model for glycoly§)shas (b) The effect ofXy is just the opposite. For arbitrarily small
two essential species of type X and Z; there are three constraints Xy a region of multiplicity can always be found; at medium
the inflow concentration¥Xy andZy and the flow ratekg. The values ofXy an oscillatory region exists while for large enough

bifurcation diagrams foky—Xo, ko—Zo, andZo—X, are shown Xo the stabilizing flow-through subnetwork for X eventually
in Figure 1, parts a, b, and c, respectively. They all possess thedominates so that neither multiplicity nor oscillations can exist.
same structure with an anti-diagonal cusp-shaped saddle-nodé herefore the tip of the cusp points in tig direction and the
bifurcation curve, and a Hopf bifurcation curve extending from oscillatory region closes up.
a single BT point around the tip of the cusp. The cusp points  (c) Basic features of any of the three bifurcation diagrams
up-left in parts a and c¢ of Figure 1 and right-down in Figure may be deduced from the other two. In particular, the anti-
1b. diagonal structure and the direction into which the cusp opens
It is useful to distinguish two kinds of stationary states in Figure 1c is implied by Figure 1a,b; the curve connecting
according to the relative level of the concentration of X or Z. the cusp points in th&y,—Zo—ko space must pass below the
Correspondingly, we label the concentration of each species atko—Xo plane shown in Figure 1a and for higher valuesXef
a stationary state that is not a saddle (but otherwise may bethan the reference BT point. Also, parts a and c¢ of Figure 1
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Figure 2. Bifurcation diagrams and reaction network for a prototype of category 2B. Rate coefficients used in calculatier322404 k, =
0.11443 ks = 1.42369k, = 0.017676. Notation: solid line, saddle-node bifurcation; dashed line, Hopf bifurcation; square, BT point; osc, bis, exc,
regions of oscillations, bistable stationary states, and excitability, respectively. Fixed parameter values for the reference Bl=pOir3, Xo
= 40.0,Z, = 1093.

suggest that the crossover of the Hopf and saddle-node bifurca-other side. The oscillatory region is asymmetric as in 2C but
tion curves not found in Figure 1b would occur if the diagram extends to zero flow rate and zero inflow concentrations
were generated for a smaller fixed valueXaf (There must be implying batch oscillations as expected. The Hopf curve does
such a crossover based on generic arguments.) not curve around the tip of the cusp and the oscillatory region
(d) The oscillatory region enclosed by the Hopf curve and does not enclose the cusp, which implies that the bistable region
the SNIPER bifurcation never extends to zero valuesof  is near the tip unlike in 2C.
because oscillations in category 2C depend crucially on the 2.2.3. Categories 1CX and 1CWhere are three essential
inflow of Z. Also, the oscillatory region is highly asymmetric  species, X, Y, and Z, in 1CX, Figure 3g, and an additional
with respect to the cusp; it extends where the stationary state isessential species, W, in 1CW, Figure 4g. The difference between
*high” with respect to X. Theko—Xo diagram may sometimes  these two categories is rather subtle: 1CX requires an inflow
have a bounded region of multiplicity terminated by two cusps. of type X species whereas 1CW does not; rather, an internal
If so, then only the left one is associated with the Hopf curve production of X from Y is involved. Generally, in a 1C category
and thus of primary interest within the context of categorization the exit reaction may produce W species that subsequently react
of oscillatory mechanisms. with Y, or W may arise by a branching off the autocatalytic
2.2.2. Category 2BThis prototype has been derividdom a cycle (a tangent reaction), or may not appear at all. Bifurcation
model of glycolysig! Here we present a modified version diagrams for all six combinations of, Yo, Zo, andk for a
(Figure 2d) that emphasizes the basic featiura B category, prototype of the 1CX category (modified Franck mda@eére
namely that it can provide oscillations in a batch reactor (of shown in Figure 3af. The Zo—Xo plot, Figure 3d, is analogous
course, it is assumed that some reactants, not shown in theto that for 2C (Figure 1c), but thHe—Xo (Figure 3a) andkn—2Zo
network diagram, must be provided in surplus or buffered so (Figure 3c) plots are diagonal unlike the corresponding diagrams
that their concentrations are effectively constant and included for 2C. For the Hopf curve in Figure 3b,c to form a loop
in the rate coefficients). The mechanism in Figure 2d follows constituting the cross-shaped diagram, the removal of X needs
from a prototype of 1B category (a skeleton BZ reaction) by to be of first order and an additional removal of Y via a first-
merging type Z and Y species into a single species that becomerder reaction has to be taken into account. The absence of the
type Z and assuming a second-order autocatalytic step withlatter causes the oscillatory region to extend to zero values of
respect to X. Therefore, there is a strong current cycle as the flow rate but the period of oscillations tends to infinity. In
required for category 2 oscillators and, as a special feature, anexperimental systems falling into the 1CX category, such as
exit reaction between X and Z that is necessary for oscillations the mixed Landolt systerf;” this feature is not observed and
when Z is recovered by a tangent rather than flow feedback. therefore we modified the prototype by adding the (slow)
As in 2C, there are two essential species X and Z and threeremoval of Y. The oscillatory region in Figure 3a extends to

external constraintXo, Zo, andko. zero values ofXp, which seems to contradict the requirement
The bifurcation diagrams in Figure 2 are distinctly different for a 1CX oscillator to have an inflow of X. However, the

from those for the 2C category. The—Xo (Figure 2a) ando— oscillations vanish aXo = 0 with an infinite period. (Remark:

Xo (Figure 2c) diagrams are diagonal unlike in 2C. e Z, Two of the three BT points in Figure 3a are mutually connected

(Figure 2c) diagram is anti-diagonal with the cusp pointing right- by @ Hopf bifurcation curve nearly coinciding with the saddle-
down as in 2C. The stationary state pattern is different;, (X node curve.)
Z,) at the low flow rate side of the cusp and (%) on the Bifurcation diagrams for a prototype of the 1CW category
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Figure 3. Bifurcation diagrams and reaction network for a prototype
of category 1CX. Rate coefficients used in calculatioks= 0.31651,

ko = 2.43584 ks = 0.07292 ks = 0.05. Notation: solid line, saddle-
node bifurcation; dashed line, Hopf bifurcation; square, BT point. Fixed
parameter values for the reference BT poiki= 0.034,X,= 0.1, Y,
=0.77,Z, = 1.63.

(essentially the minimal bromate oscilla&drare shown in
Figure 4a-f for the same pairs of constraints as in Figure 3.
Behavior of type W species, as indicated by the shift experi-
ments, is identical to that of type X specieddlso, the
bifurcation diagrams show the same kind of structure when
plotting eitherXy or Wy against any other constraint; therefore
we have omitted type W species in the figure. There is virtually
no difference in the corresponding diagrams for 1CX and 1CW.
The extent of oscillatory regions may vary substantially when
rate coefficients are changed. In some cases the Hopf bifurcatio
curve does not form a loop around the cusp; rather, it is
contained within the cusp region and oscillatory regions

disappear. Even so, the orientation of the cusp structure remain

unchanged.

As in category 2, the structure of diagrams in a plane of two
inflow concentrations can be deduced from the flow+aitdlow
concentration diagrams.

Schreiber and Ross
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Figure 4. Bifurcation diagrams and reaction network for a prototype
of category 1CW. Rate coefficients used in calculatiors: =
0.0083786,k, = 0.73261,ks = 0.025, ks = 1.46522,ks = 0.02.
Notation: solid line, saddle-node bifurcation; dashed line, Hopf
bifurcation; square, BT point. Fixed parameter values for the reference
BT point: kg = 0.0052,X, = 0.1,Yo = 3.3,Z = 7.3, W = 0.1.

5c. The diagrams for 1B show a region of multiplicity limited
by two cusps, rather than one. This is due to a particular choice
of rate coefficients; the left cusp in Figure 5a can be shifted to
negative values ofXo. As expected fo a B category, the
oscillatory region extends to zero flow rates. Tke-Yo and
ko—Zo diagrams in Figure 5b,c are identical up to a scaling factor
and therefore the correspondilfg—Z, diagram in Figure 5f is
peculiar in that the bifurcation lines are degenerate. All of them
are parallel straight lines: there are two saddle-node bifurcation

Mines very close to each other, and a Hopf bifurcation line;

eigenvalues along each line are constant. This is due to a special

way the species Z and Y are linked in the network as mentioned
%Iready in Eiswirth et al.

Generally, there may be more essential species of the same

type in an experimental oscillator or in its realistic model, for

example, more than one autocatalytic species is typically
expected to form an autocatalytic loop. Corresponding bifurca-

2.2.4. Category 1BThis category has three essential species tjon diagrams for the species of the same type will possess the

X, Y, and Z and hence four external constraiXgs Yo, Zo, and

same features and thus the process of determination of the

ko. The prototype, Figure 5g, is essentially the three-variable category is reduced to that for the prototypes.

Oregonatof* The six corresponding bifurcation diagrams are
shown in Figure 5, parts-&. There is more correspondence

between comparable diagrams for 2B and 1B categories than

with the C categories. In particular, the flow rat@flow
concentration plots are consistent for 2B and 1B: diagonal for
Xo, Figures 2a and 5a, and anti-diagonal Zgr Figures 2b and

3. Relations between Bifurcation Diagrams and
Concentration Shift Matrix

3.1. Local and Global Concentration Shift Matrix. In a

flow-through reactor experiments may be carried out such that,
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at the BT point used in generating the bifurcation diagrams and
allow only one constraint to vary at a time while monitoring
the stationary state concentrations of all species. The slopes of
the curves in such a plot for each species at a given value of
the constraint are simply the values from a corresponding
column of the shift matrix. As an example, we show the flow
rate—stationary-state-concentration diagrams for all the catego-
ries in Figure 6ad. Each curve has three branches, two of them
corresponding to an “upper” and a “lower” stationary state, and
the third one in the middle corresponding to the saddle.

An important observation is that the curves are monotonic
on the three respective branches when sufficiently close to the
region of multiplicity. Consequently in this region all the
elements of the concentration shift matrix determined locally
at any value of the constraints have unique signs. In prototypes,
this rule is mostly valid in a broad range of constraints and
represents a typical behavior used for categorization. However,
extremes on the curves may occur and the monotonicity holds
no longer (for example, see lower branch for Z in Figure 6b).
This restricts the range of constraints where the categorization
based on local concentration shifts may be applied. Therefore
the local concentration shift method for categorization is limited
to the proximity of either a saddle-node bifurcation or a Hopf
bifurcatiort provided that the latter is not too far from the saddle-

Xo
0.1

g node bifurcation.

category 1B: .

JA When two branches of stationary states overlap we can always
O tle 2X + 27 unigquely assign one of them as upper and the other as lower
z 7 7Y X Y with respect to each of the species. Thus the limitation of the
Y= X local concentration shift method can be overcome if we consider
>2<x+ LY) - J[ the bifurcation diagrams Figures-5 and add the information
XY 7 z on upper and lower stationary values for each species provided

by diagrams in Figure 6. Now we can make the main conclusion

Figure 5. Bifurcation diagrams and reaction network for a prototype ¢ this section: whenever there istransition from an upper
of category 1B. Rate coefficients used in calculatioks= 6.69803, ) bp

ko — 1.06601ks = 0.395 ks — 63.03.ks — 3.95. Notation: solid line, state to a !ower statas a c_:hos_en constraint is_ increased, the
saddle-node bifurcation; dashed line, Hopf bifurcation; square, BT point. CONcentration shift regulation isverseor negatie (a minus
Fixed parameter values for the reference BT poikt:= 1.0, Xo = sign in the symbolic shift matrix) and, converselytransition
0.1,Y, = 0.166,Z, = 1.0. from a lower state to an upper staieassociated with direct
at a stable stationary state near a Hopf bifurcation, the inflow OF POSitiveregulation (a plus sign in the symbolic shift matrix).
concentrations of the essential species are slightly increased oné'ence the sign-symbolic matrix of local concentration shifts
at a time and the observed change in the stationary stateC@n e replaced by a sign-symbolic matrix of global concentra-
concentration of each species is measured. The resultingtion shifts, which is easily derived from Figures-3 for each
concentration shift matrix can be used as a tool for category category con_3|der|ng the upper/lo_wer transitions for e_ach species
determination and classification of essential species. When!n the direction of each constraint. In fact, flow rateflow
comparing experiments to a proposed mechanism, the concenfoncentration dlagrams _alone are _sufflc!ent for depvmg _the
tration shift matrix may be readily calculated as the negative global concentration shift matrix, including the shifts with
inverse of the Jacobidrfsee eqs B2 and B3) and compared to "eéSPect tdw.
experiments; only sign symbolic representation is necessary for We denote an element of the (sign-symbolic) global shift
determining the category. The elements of the shift matrix are matrix asAj;, wherei represents théh species at stationary
measuring the sensitivity of stationary concentrations to changesstate andj represents thgth constraint (either the inflow
in inflow concentrations. Since the flow rate is frequently used concentration of a species or the flow rate). The global shift
as a variable constraint, it is convenient to extend the matrix matrices for essential species in each category are shown in
by one column expressing the sensitivity to the flow rate; see Table 1. By comparing the tilt of the cusp regions in the
Appendix B for the derivations. bifurcation diagrams and by the way the matrix was constructed
In general, the shift method is local by virtue of perturbing we can make the following observations. (a) Columns: (1) each
the stationary state only slightly (or infinitesimally in calcula- pair of columns must have either the same signs or exactly
tions). On the other hand, bifurcation diagrams may be viewed opposite signs of corresponding elements; (2) if two columns
as a global extension of the shift experiments. Instead of a are the same, then the bifurcation diagrams in the corresponding
particular point in the space of constraints we are now constraints have anti-diagonal structure of the cusp; (3) if two
considering the whole region probed by taking two-parameter columns are opposite, then the bifurcation diagrams in the
slices. To see the effects of changing the constraints on thecorresponding constraints have diagonal structure of the cusp;
stationary state, concentrations of the species need to beand (4) rules 2 and 3 imply that two bifurcation diagrams with
measured when constructing the bifurcation diagram. To visual- a common constraint can be used to predict the tilt of the cusp
ize the changes in concentration for a particular species in thein the complementary bifurcation diagram with the common
prototypes of categories we take the reaction rate coefficientsconstraint left out. (b) Rows: (1) by symmetry, each pair of
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Figure 6. Dependence of stationary concentratioisys, andZs on flow rate for each category. (a) Category 2Kz = 0.5,Z, = 6.8. (b) Category
2B: Xo = 100,Z, = 1000. (c) Category 1CXXo = 0.1,Y, = 0.77,Z, = 1.63. (d) Category 1BX, = 0.1, Yo = 0.18,Z, = 1.0. Rate coefficients
as in Figures 1, 2, 3, and 5, respectively. Notation: solid line, stable; dashed line, unstable; square, Hopf bifurcation.

TABLE 1: Global Sign-Symbolic Concentration Shift

Matrix {A;} for Each Category

to be measured so as to indicate bistability and oscillations, such
measurements provide only one row of the global shift matrix

category 2C category 2B for the particular measured species. In Eiswirth étahother

i Xo Z ko i i Xe 2o ko indicator, in addition to concentration shifts, was introduced.

X T T+ X n — Namgly, the stanngry §tate at a Hopf blfgrcgngn can be either

ZSS Ay 0 ZSS Ajj + - stabilizing or destabilizing as the constraint is increased. Here
again one species needs to be measured to determine whether

category 1C category 1B oscillations change to a stationary state or vice versa, hence

i i Xo Yo Zo koo i Xo Yo Zo ko this method is equivalent to determining one row of the
concentration shift matrix. In conclusion, to obtain the full

Xs + - + - X + - - - . . . X

Yo A - + - 4+ Yo A + 4+ o+ matrix, all constraints must be varied and all species measured.

Zs -+ - + Z - - - 3.2. Effects of Including Nonessential Species into the

rows must follow rule 1 for columns; (2) when two rows are Prototypes. The prototypes described in Section 2 involve by

the same, the two species have the same regulation with respec‘i.j_ef'r"t'o_n on_ly essential species. _We have ShO.W” tha_lt the
to all constraints and are either of the same type, or else theybﬁurcatlon dlagram§ and the assoc!a.ted global Sh.'ft matn).( can
are category specifiefor 1B and 2B, X and Z have the same be used to determlnt_e the connectivity of essential species in
regulation, for 1C, Y and Z have the same regulation; and (3) the (skeleton) reaction net\_Nork. .However, .the bifurcation
two rows of opposite signs indicate mutually competitive diagrams and the concentration sh|fts are _deflned equally well
action—in category 1, X and Y have always opposite regulation, for _both essentlal an(_ll r!onessentlal species and so the_ rules
for 1C and 2C, X and Z are opposite. outlined above_ in prl_nC|pI_e apply to any type of species.
Thus by comparing regulation of two species S1 and S2 with Therefore the bifurcation diagrams and the global shift matrix

respect to all constraints (i.e., two rows), we can infer the kind fOr @ complete mechanism must provide some information on

of reactions they are involved in. Opposite regulation suggests the connectivity of nonessential species. Since methods for
reaction of the type S* S2— (as the exit reaction between X distinguishing between essential and nonessential species are

and Y in category 1, or the flow feedback reaction between X available}-*#we assume that nonessential species have already
and Z in categories 1C and 2C); identical regulation suggestsP€een identified and now we examine how their involvement in
that the species S1 and S2 are produced by the same reactioﬁ‘e net\_Nork re_flects itself in the bifurcation diagrams/concentra-
(as X and Z in 1B or 2B) or both compete for the same species tion shift matrix.

(as Y and Z in 1C). Implications of the rules for columns and  First we take the 1CX category prototype and add three
rows will be fully explored in the following sections. nonessential species of type a, b, and ¢, see Figure 7. In general,
Because any two rows/columns are either the same ortype a species is gactantthat produces an essential species
opposite, the minimal information necessary to construct the by a first-order reversible reaction and is only weakly coupled

global shift matrix is to provide one row and one column, or to the network (the reaction Z a is slow); type b species is
one row/column and diagonal elements. To construct one row a productweakly coupled to the network (& X is slow); type
experimentally we need to measure the concentration of onec species is either@actantthat reacts with an essential species
species and vary all constraints; to construct one column we or anintermediate(as in Figure 7), possibly strongly coupled
need to measure all species and vary one constraint. Althoughto the network which, if buffered, does not prevent the system
experimental construction of flow raténflow concentration from oscillations. As before with the essential species, we have
bifurcation diagrams for all species requires only one species constructed bifurcation diagrams kg—ap, ko—bo, andko—co
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Figure 7. Reaction mechanism and network diagram for the 1CX  category extended by adding nonessential species c1, ¢2, and c3.
category extended by adding nonessential species a, b, and c.

. . . . . TABLE 3: Global Sign-Symbolic Concentration Shift
TABLE 2: Global Sign-Symbolic Concentration Shift Matrix {A;} for an Extended 1B Category (1B+ c1, c2, c3)
Matrix {A;} for an Extended 1CX Category (1CX+ a, b, c) -

| ] Xo Yo Zo clo c2 (X} ko
I J Xo Yo Zo Qo bo Co ko
Xs + - - 4+ - - -
Xs + -+ + + + - Ys -+ o+ - + + +
Ys - + - - - — + Zs A + _ _ + _ _ _
LA T - - - - - * cls -+ + - + + +
& - + - - - - * c2 -+ o+ - + + +
b + - + + + o+ - 3. + - - _ _ _
G + - + + + o+ -

parameter planes and determined the “lower” and “upper’ W&V @S the species c3. As mentioned above, we need some

stationary states. However, for the sake of brevity, we convert auxiliary information to determine the actual connectivity of
this information to the global shift matrix and use this the essential species. Given that this information points to the

representation only, see Table 2. We expect the submatrix fortangent feedback as in Figure 8, the connectiv?ty of noqessent!al
the essential species to provide clues for determining the SPECI€S can be deduced as follows: the row in the shift matrix

connectivity among essential species. There are two alternatives/©" €1 iS opposite that for X and the column is the same as that
the flow feedback shown in Figure 7 with Z provided only in for X', Moreovgr, _Cl exhibits a negative self-regulanon. Thus

the feed, or an internal feedback with Z being produced by the Its Sh'ﬂ, behawor is the same as th.e Sh'ﬁ .behaV|or of the type
exit reaction between X and Y. To determine which one is the £ SPecies in the 1C category, which indicates that c1 reacts

actual case we need external information provided either by a With X much like Z does in the 1C category. The species c2
method utilizing nonlinear dynamics, such as pulsed experi- has the same shift behavior as the type Y species and this

ments325.26or simply by knowledge of the underlying chem- suggests that c2 might react with X in an exit-like reaction;
istry. Assuming that the actual subnetwork for essential species@nother possibility comes from observing that the row shift

is as in Figure 7 we can proceed to the examination of the égulation of c2 is opposite not only to X but also to Z, which
connectivity of nonessential species. suggests that c2 might react with Z. Pulsed experiments or other

Type a species has the same row and column as the specie xternal information is needed for correct determination. Finally,
Z to which it is coupled; likewise type b species has the same 1€ SPecies €3 shows the same regulation as Z and therefore
row/column regulation as the species X to which it is coupled. should be involved in the exit feedback since Z itself is involved

|in the tangent feedback.
These examples suggest that the nonessential species should
e identified before examining the shift matrix; the shift matrix
annot be used to distinguish various types of nonessential
species (unlike the essential species). The shift regulation can
be the same as that for an essential species, which together with

type W species, that is, reaction X Y — c is assumed. the known type of species provides an important clue as to its
However, other couplings of ¢ providing the same regulation involvement in the network. However, the shift regulation may

are possible; for example, ¢ could be produced from X without not be consistent with any essential species within the given

participation ofY and then react with Y. Therefore the global Cc&t€gory. This itself is an indication that the species is
shift matrix provides alternatives rather than unique answers NPnessential but, more importantly, such a species may have

and further information is needed to decide which one is correct, SNift behavior consistent with an essential species from another

As before, this information may be provided by pulsed experi- Category (such as the Z-like regulation in 1C of the species c1

ments or by knowledge of the underlying chemistry. in the second example belonging to 1B) and that strongly
The second example is the 1B category prototype extendedSU99€sts Its connectivity. _ . .

by three type c nonessential species, see Figure 8. The specieaeln conclusion, the global shift matrix proves useful in the

c1 and c2 enter the network as reactants by reacting with an termination of connectivity in the network. It provides

essential species, and species ¢3 is an intermediate. The Shi@lternatives_rather than ur_liqug choices fo_r various parts of the
matrix is shown in Table 3; the submatrix corresponding to network which, however, is still valuable input to the mecha-

essential species is consistent with the 1B prototype. As with nism-determining procedure.
the 1C category, there are two possible ways species Z might
be involved. One of thempossessing éangent feedbackis

the prototype itself. Here Z is produced by the tangent reaction
cl+ X — 2X + 2Z and negative feedback is mediated by the = Belousov-Zhabotinsky Reaction. After examining proto-

reaction 2Z+ c2 — Y. The other possible arrangement types of categories and their extension to include nonessential
displaying arexit feedbackproduces Z by the exit reaction X  species for the purpose of calculating bifurcation diagrams we
+ Y — Z and subsequently Z is converted to Y in the same now focus on the reverse problem. For a more complex

Hence a simple first-order reverse coupling to an essential
species implies an identical regulation. Like type b, type c
species has the same regulation as type X species, but we alread
know that c is an intermediate and hence cannot be simply
coupled to X as b is. We can, for example, assume that its
coupling to the network will be similar to the coupling of a

4., Determination of Reaction Mechanism from
Bifurcation Diagrams
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TABLE 4: Reaction Mechanism and Rate Coefficients for a Modified FKN Mechanism of the BZ Reactiof

reaction no. reaction rate coefficient
1) Br- 4+ HOBr+ H* — Br, + H,0O ki=8x 10°M2s?
) Br- + HBrO, + H* — 2HOBr kr=3x 1P M2s?
3) Br- + BrOz~ + 2H" — HOBr + HBrO, ks=2M3st
(4) 2HBrQ, — HOBr + BrO;~ + H* ks = 3000 M 151
(5,-5) HBrO, + BrOs~ + Ht = 2BrO,* + H,O ks =42 M2st
ks=42x 100M1s?
(6, —6) Ceé* 4+ BrOy + H* = Cé*" + HBrO, ke =8 x 10*M2s1
ks=89x 1M 1s?
@) Cée'* + BrMA — Ce ' + Br~ + products k;=05M71s?
(8) Br, + ENMA — H™ + Br~ + BrMA ks=6x 10°M-1s1
9,-9) H* + MA = EnMA + H* ke=13x 102M1s?

ko=13x10*)M st
aMA = CHy(COOH), EnMA = (OH),C=CHCOOH, BrMA = BrCH(COOH}).

ko is increased (negative regulation with respeckdp this is
consistent with type X species from 2B, 1B, or 1C. The
bifurcation diagram for Br is anti-diagonal and the regulation
with respect tds is positive. Such behavior is consistent with
type X species from 2C or with type Y species; the former is
inconsistent with the assumed type X for HBr@nd BrQ".
Thus we rule out category 2C and assume ®rbe of type Y.
Therefore category 2B is also ruled out but both 1B and 1C are
still possible. The anti-diagonal bifurcation diagram for*Ce
is consistent with type Z species in 1B and this is confirmed
by a negative regulation with respectip (Remark: The two
Figure 9. Network diagram for the FKN mechanism of the BZ reaction BT points in theko—[Ce&**]o diagram in Figure 10 are connected
shown in T_able 4. Species with effective_ly constant concentratiohs (H by a Hopf bifurcation curve nearly coinciding with the saddle-
and HO), inflows, and outflows are omitted. node curve.) So far we can assume that HBa@d BrQ: are
mechanism,we calculate its bifurcation diagrams and then involved in an autocatalytic cycle. An alternative is that one of
discuss the process of network reconstruction from those them is a type W species that would be produced by an exit
diagrams and the associated shift matrix. The reaction mecha-reaction X+ Y —. However, a 1B mechanism including W
nism in Table 4 is a variant of the Fiel&6ros—Noyes model has not been found as yet and, moreover, by taking an argument
of the Belousow-Zhabotinsky reactiort1>with the organic part ~ from chemistry, the reaction of Brwith either of HBrQ and
simplified according to Field and Noyé&&the rate constants  BrO.* to produce the other does not proceed. Next we need to
are taken from Edelson et ®land Field and Fsterling?’ The determine whether Cg¢, the type Z species, is involved in a
corresponding reaction network is shown in Figure 9. There tangent or exit feedback. By looking at the nonessential species
are 11 species; some of them are very quickly reacting Ce* (Figure 11) we find that the diagonal cusp region and
compounds or radicals which cannot be stored and fed into thepositive regulation with respect to flow rate are consistent with
reactor and therefore corresponding bifurcation diagrams aretype Z behavior in category 1C. This is the same situation as
experimentally not feasible. For the sake of a complete picture, with c1 in the previous example of extended 1B prototype, that
however, we calculate diagrams for every species and discusss, C&" should react with a type X species. This strongly
the experimental feasibility later. suggests that Gé reacts with Br@ to provide Cé&*, which in

The nonessential species can be discerned by determiningiurn implies a tangent feedback for €e
relative oscillatory amplitudes and quench vectSrkaving The species in Figures 11 and 12 are all nonessential. It should
HBrO,, BrOy*, Br-, and Cé" as essential species. For a range be noted that all of them have some irregularities in the shape
of experimentally plausible constraints we calculated the inflow of the region of multiple stationary states: either there are
concentratior-flow rate bifurcation diagrams for all species. additional humps or there is no cusp at all. These features may
The inflow concentrations for a reference point common to all be taken as indications of the nonessential nature of these
bifurcation diagrams are the following: [BgQ = 0.08 M, species. As shown earlier, such irregularities do not need to
[MA] = 0.05 M, [Br] =8.5x 107* M, [Ce®'] = 0.002 M; occur in diagrams for nonessential species but may provide an
inflow concentrations of other species are zero. The concentra-independent confirmation.
tion of hydrogen ions in the reactor is assumed fixed!][H BrOs;~ shows the same Z-like behavior as®Cand therefore
1.5 M. For rate coefficients see Table 4. In addition, we it should react with a type X species. The obvious choice is
calculated the dependence of stationary states on the flow rateHBrO,. HOBr has a diagonal cusp and positive regulation with
ko, which enables us to identify transitions between lower and respect td,. This is characteristic of the type X or W species;
upper stationary states. These results are shown in Figures 10 in fact, HOBr should be seen as W-like, since by being
12. The two kinds of diagrams for each species form a pair and nonessential it cannot be a part of the autocatalytic cycle. This
are grouped accordingly in the figures. We carry out as much situation is analogous to that for the species c in the extended
of the analysis as possible by using Figures-12 and referring 1C prototype; therefore we deduce that HOBr is produced by
to bifurcation diagrams for prototypes. Then we reformulate the exit reaction HBr@+ Br~ —. The bifurcation diagram for
the information in Figures 1012 in terms of the global shift ~ Br, is anti-diagonal and the regulation with respectkgois
matrix and double-check the results. negative, which is consistent with Z-like behavior (in 1B). This

The bifurcation diagrams for HBrand BrQ* are diagonal means that Bris involved in either a tangent or exit negative
and display transitions from upper to lower stationary state as feedback loop. Since the (primary) tangent feedback is already
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Figure 10. Bifurcation diagrams (left) and corresponding stationary state diagrams (right) of essential species for the FKN model. Notation in
bifurcation diagrams: solid line, saddle-node bifurcation; dashed line, Hopf bifurcation; solid square, Bogdanov-Takens point; osc, l@§, region
oscillations and bistable stationary states, respectively. Notation in stationary state diagrams: solid line, stable; dashed line, unsigbkreope

Hopf bifurcation point. For parameter values see Table 4 and text.

associated with (the essential species@ee should formulate species have the same (and rather degenerate) behavior signify-
a reaction that would mediate an (secondary) exit feedback. Thising that they are mutually coupled by a reverse reaction. This
can be done by assuming that HOBr formed by the exit reaction situation is similar to the pairs of species a and Z or b and X in
gives rise to By, which in turn should react to form Brso that the extended prototype of the 1C category in Figure 7. However,
the negative feedback is accomplished. By chemistry argumentswhich of the species ENMA and MA is reacting with,Bannot
the first of the two reactions should combine HOBr and.Br  be deduced from these diagrams. The bromination of EnMA
By the same arguments, the other reaction, reduction of Br (or MA) produces Br (completing thereby the exit feedback)
to Br—, is expected to involve bromination of malonic acid MA and bromomalonic acid, BrMA.
or its enol form EnMA. We can verify this hypothesis against Finally, two diagrams for BrMA are somewhat difficult to
bifurcation and regulatory behavior of EnMA and MA. Indeed, interpret. The cusp region is distorted and bent near the tip;
regulation of both ENMA and MA is opposite that for Br nevertheless, we classify it as a slightly distorted anti-diagonal
suggesting that Brreacts with EnMA or MA. Bifurcation rather than a strongly distorted diagonal structure. The regulation
diagrams for both EnMA and MA are without cusp and can be is negative with respect &g and both diagrams combined imply
assigned neither diagonal nor anti-diagonal structure. These twonegative self-regulation for BrMA. This regulation clearly points
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Figure 11. Bifurcation diagrams (left) and corresponding stationary state diagrams (right) of inorganic nonessential species for the FKN model.
Notation and parameters as in Figure 10.

to Z-like behavior and is consistent with the assumed anti- by shift behavior characteristic of other reactions. Whether the
diagonal bifurcation diagram. These observations suggest thatreactions are reversible or nearly irreversible cannot be stated.
BrMA feeds back to Br; however, the same regulation with

respect toky as Cé* seems to rule out a mutual reaction in 5. Discussion and Conclusions

contrast to the actual case. ) ] ) ) )
Bifurcation diagrams in external constraints calculated for a

deﬁiea?r::;elr:r;gﬂ;/:sti gﬁ l:ﬁg g:obégrgﬁﬂ?%iﬁgagxgﬁncan prototype of each category of oscillatory reactions suggest that
) . . ’ . specific features in the reaction network of an examined
Table 5. By inspecting this table we can-d.educe anq confirm oscillatory reaction can be identified by specific patterns in the
the same features of th_e network conn_ectlwty. In_partlcular, the corresponding diagrams. As already pointed out in Eiswirth et
key features are derived from th2like behavior of the 1 he decisive feature is the tilt of the cusp-shaped region of
nonessential species BYQ Ce* (as in 1C), and Brand BrMA multiple stationary states. Supplementary clues are provided by
(as in 1B) indicated by negative diagonal elements and by the |ocation of oscillatory or excitable regions adjacent to the
comparing the corresponding rows with the prototypes. region of bistability. It is sufficient to construct the inflow
As a result, we were able to deduce reactions 1, 2, 5, 6, 8, concentratior-flow rate diagrams for every species; the tilt in
and 9 and partly deduce reaction 7; reactions 3 and 4 are maskedhe inflow concentratiorrinflow concentration diagram for any
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Figure 12. Bifurcation diagrams (left) and corresponding stationary state diagrams (right) of organic nonessential sqpecies for the FKN model.
Notation and parameters as in Figure 10.

TABLE 5: Global Sign-Symbolic Concentration Shift Matrix {A;} for the FKN Mechanism of the BZ Reaction
essential species nonessential species
i ] [H BI’OZ]O [BTOQ']O [Br_]o [Ce4+]o [Br03‘]0 [C93+]0 [HOBF]O [Brg]o [BI’MA] 0 [EnMA]o [MA] 0 ko

[HBrO]s + - — — + - + ? 2
[BrOsls + + - - + + + - - ? 2 -
[Brls i - — - - - — - + + ? 2+
[Ce*]s + + - - + + + - - ? 2 -
[BrOs s - - + - - - - + + ? 2+
[Ce*]s — — - - - — - + + 2 2+
[HOBH]s + - - - + - + - - ? 2 -
[Brals Aj + + - - + + + - - ? 2 -
[BrMA] 5 + - - - + - + - - ? 2 -
[ENMA], - - + + - - - + + ? 2+
[MA] s - - - - - - - + + ? 2+

pair of species is implied (see rule 4 for columns in Section In the case of the FKN mechanism for the BZ reaction we
3.2). If the information about “lower” and “upper” stationary were able to reconstruct most of the reaction network provided
states is added, the bifurcation diagram becomes a powerfulthat all reacting species can be measured and all these species
tool not only for distinguishing among categories and for can also be added in the feed. While the first part of the
determination of essential species, but also for reconstructionassumption may be experimentally feasible, the second part may
of reaction networks. In particular, transitions between “lower” not be, because highly reactive intermediates cannot be fed
and “upper” stationary states across the boundary of the cuspcontinuously into the reactor. The question arises how far the
in the bifurcation diagrams can be arranged into a global reconstruction of the network connectivity can be carried out
concentration shift matrix, which is intimately connected with in such a case. The reactive intermediates are HBBDO,",

a (local) concentration shift matrix formulated as a tool for HOBr, and EnMA. Thus the corresponding bifurcation diagrams
mechanism determination in prior wokg:’ These matrices are  in Figures 16-12 are not available and likewise the correspond-
written in a sign symbolic form; by comparing columns/rows ing columns in the global shift matrix in Table 5 are left out.
for pairs of various species the mechanism can be at leastOn the basis of measurements of relative oscillatory amplitudes
partially reconstructed. we can still discern essential and nonessential species. Thus Br
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and Cé* can be safely determined as type Y and Z species, wherexo = (Xog, * * *, Xon) is the vector of feed concentrations
respectively. Since Ce& has a negative regulation with respect for each species arld is the flow rate (or more accurately, the
to flow rate, the category must be 1B. HBr@nd BrQ* have reciprocal residence time). The inflow and outflow terms can
the same negative regulation with respect to flow rate & Ce be formally treated as zeroth- and first-order pseudoreactions,
(and hence the same rows in the shift matrix); so they may be respectively, and can be included in an extended reaction rate
of type Z or type X. The missing clue can be provided by vectorv(x) = (v, koXo, kox). Accordingly, by rewriting the flow
another method for classification, namely by oscillatory phase term ko(Xo — X) askol(Xo — X), wherel is identity matrix, an
shifts39type Z species in 1B are phase delayed with respect to extended stoichiometric matrix is = [, 1,. —1]. Thus the
type X species. This information is accessible since we assumeoverall rate functiorf(x) in (2) can be expressed in a compact
that all species can be measured. Further reasoning about théorm f(x) = vv(X).
network connectivity can rely on the same arguments as A stationary states satisfies the equatiomv(x) = 0. Hence
discussed in Section 4 up to the point of determining HOBr. vs = v(xg) is contained in the null space of Moreover, all
The missing bifurcation diagram (or column in the shift matrix) components o must be nonnegative numbers, which narrows
leaves undecided whether this species should be seen as W-likeéhe set of all possible stationary reaction rate vectaréthe
or Z-like. Again, this can be decided from the phase shift of currents in SNA terminology) to an open, conved,
oscillations: W-like behavior should be in phase with type X dimensional coned. = r — rank(v), in the space of alb’s.
species, Z-like behavior should be in phase with type Z species The edges of this stationary state cone represent sets of stationary
and delayed with respect to type X species. Finally, the states that have minimum possible nonzeys admitted by
bifurcation diagrams for EnMA and MA are degenerate (and (2), and uniquely define a set of major subnetworks (or extreme
the corresponding columns are undetermined); therefore impli- currents) of the mechanism. In general, the nuntoef such
cations are equally incomplete whether EnMA can be fed in or subnetworks equals at least the dimension of the déree d..
not. Thus the FKN network can be reconstructed to the same Denote bye, k = 1, ...,K the (arbitrarily normalized) vectors
extent. pointing along the edges of the cone. Any linear combination
We have shown that the task of reconstructing reaction zle axex with nonnegative coefficients is again a current.
networks from measurements based on methods of nonlinearConversely, any currenbs can be expressed as a linear
dynamics and bifurcations can be followed to a great extent by combination of extreme currents (such a decomposition is,
using bifurcation diagrams and transitions between “lower” and however, not unique ifK > d;). If the /s are suitably
“upper” stationary states. If combined with other methods for normalized, for example so thile aj=1k=1,..K, then
clalssificat.ion and determination of oscillatory reaction mech- the numbersa, = Otk/Zle oy quantify the contribution of
anisms this approach enables us to reconstruct the network  extreme currents to a particular current. Certain subsets of
at least an essential part of-ieven if limitations in feeding extreme currents span subcones thatadénensional faces of
unstable intermediates into the reactor are taken into account.ipe stationary state cond,= 2, ...,d: — 1. Hence there is a
Thus the whole set of methods systematically studied in this nierarchy of subnetworks associated with edges and faces of
and earlier papet$=9-2>2%2%provides a useful systematic tool  the stationary state cone that may be used as simplified models
that can be used in cases where the classical intuition-basednstead of the full network.

approach does not give satisfactory results, or can be used to The identification of the edges and faces is useful when

help decide between alternative proposed mechanisms. examining the stability of the (sub)network at a stationary state
) Xs. The Jacobiand of eq A2 atxs is
6. Appendices
Appendix A: Basic Notions from the SNA Theory?2 ‘]:gh: :Vd_UX: =v(diagvs)/cT (diagxs)_l (A3)
Assume that there are species taking part im chemical x> s

reactions so that speciesn > m, are entering at least one of

_ <K . . iy — =
the reactions wherevs = Y,_; axe and the kinetic matrix = {«;} = {9 In

vj(X9)/9 In x}.The numbel; is the effective order of thgh
N m reaction with respect to théh species; if the reaction rates obey
. Ly . R 4 power law ther; is independent ofs. Thus a reparametrization
R ;V"Xi ;V‘jx' J=Leenr (AD of the system (A2) is suggested such tkat ..., X, anday, ...,
Ok are new parameters.
If power law kinetics is in effect, the stability of the current
vs IS indicated by principal subdeterminarfisof orderl, | =
1, ...,n of the matrix

wherev; andw; are respectively the left-hand and right-hand
stoichiometric coefficients of species X reaction R Thefirst
n species are reactants or intermediates and the remaining

n are products. Let = {v] — vj} be the @ x r) stoichiomet- V= w(diagv )" (Ad)
ric matrix, x = (X, * * *, Xn) the vector of the chemical species
concentrations, an@(x) = (v1(X), * - -, »(X)) the vector of

There are(]) different §’s related to all permutations df
species. If at least one of them is negative, then at least one
eigenvalue ofd is unstable provided that the values of the
stationary state concentrations of the corresponding species are
sufficiently small? Sincevs = z,’le oxe, the stability of the
network's stationary states depends on the stability of the
extreme subnetworks. An unstalgeinduces instability of the
entire network if the corresponding is large enough angs
dx satisfies the requirement of small concentration of those species
i f(X) = P0(X) + Ko(Xo — X) = vv(X) (A2) for which the corresponding, < 0. When linearly combined,

t the stableg(s usually do not form an unstable current (then

reaction rates. The chemical equations Al together with the
vector functionz(x) define the mechanism of the reaction, also
called a stoichiometric network. Only the concentrations of
reactants and intermediates are dynamical variables for which
independent dynamical equations can be written. The time
evolution ofx in a flow-through system at constant temperature
in a well-stirred reaction cell of constant reaction volume is
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they are called mixing stable), but an instability may occur, since tally obtained by measuring a chande; in the ith stationary
v(X) is generally nonlinear irx. state concentration as a response to a changein the jth

A network diagram is a convenient graphical representation inflow concentration. For small variations in constraints this
of mass action networks. Any elementary reaction is drawn as matrix can be approximatédy (dxJdxp), which is obtained
a multiheaded multitailed arrow oriented from species entering from (5) upon differentiating with respect g,
the reaction to those produced by the reaction: the number of d
feathers (barbs) at each tail (head) represents the stoichiometric s = —k, NG (B2)
coefficient of the reactant (product); the order of the reaction is dxy
the number of left feathers. A graph theoretical approach allows
for checking the stability of a (small enough) network by
inspection of the graph.

Appendix B: Classification/Categorization Approach?
Two classes of species are recognized, &ssentialand
nonessentialspecies, which are distinguished primarily by
measuring their relative amplitudes of oscillations and their
guench amplitudes. The nonessential species may be one of thre

whereJ = (df/dx)|x=x, iS the Jacobian matrix. Here we assume
that the stationary point is nondegenerate stable (near a Hopf
bifurcation), and thereforé is invertible. Hence the local shift
concentration matrix is proportional to the inverse of the
Jacobian matrix. Similarly, upon differentiating (5) with respect
to ko we obtain an additional column of the shift matrix
gxpressing the sensitivity of the stationary state with respect to

types: type a species are reactants with a negligible feedback,Changes ik,
type b species are products with a negligible feedback, and type 0% .
c species are those intermediates which can be buffered without Wo =—J (X —X%) (B3)

losing the oscillations. The nonessential species have either small
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